On the Structure of Unconditional UC Hybrid Protocols

نویسندگان

  • Mike Rosulek
  • Morgan Shirley
چکیده

We study the problem of secure two-party computation in the presence of a trusted setup. If there is an unconditionally UC-secure protocol for f that makes use of calls to an ideal g, then we say that f reduces to g (and write f v g). Some g are complete in the sense that all functions reduce to g. However, almost nothing is known about the power of an incomplete g in this setting. We shed light on this gap by showing a characterization of f v g for incomplete g. Very roughly speaking, we show that f reduces to g if and only if it does so by the simplest possible protocol: one that makes a single call to ideal g and uses no further communication. Furthermore, such simple protocols can be characterized by a natural combinatorial condition on f and g. Looking more closely, our characterization applies only to a very wide class of f , and only for protocols that are deterministic or logarithmic-round. However, we give concrete examples showing that both of these limitations are inherent to the characterization itself. Functions not covered by our characterization exhibit qualitatively different properties. Likewise, randomized, superlogarithmic-round protocols are qualitatively more powerful than deterministic or logarithmic-round ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Feasibility Results in Unconditional UC-Secure Computation with (Malicious) PUFs

Brzuska et. al. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossi...

متن کامل

Unconditional UC-Secure Computation with (Stronger-Malicious) PUFs

Brzuska et. al. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossi...

متن کامل

Modified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles

Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) wi...

متن کامل

Parametric Study of UC-PBG Structure in Terms of Simultaneous AMC and EBG Properties and its Applications in Proximity-coupled Fractal Patch Antenna

In this paper, a parametric study of conventional Uniplanar Compact Photonic Band Gap (UC-PBG) structures, with different dimensions, is investigated. The studied structure operates as an Artificial Magnetic Conductor (AMC) in which the performance is mainly characterized by the resonant frequency and bandwidth. Simulation and numerical analysis have been carried out using CST Microwave Studio ...

متن کامل

Power Distribution Development and Optimization of Hybrid Energy Storage System

In this paper, the development and optimization of Power Distribution Control Strategy (PDCS) have been performed for a Hybrid Energy Storage Systems (HESS) of a Series Hybrid Electric Bus (SHEB). A common PDCS is based on the use of Ultra-Capacitor (UC) pack. A new simple PDCS is developed as a battery based one. For the battery based PDCS, four parameters ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017